cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213144 Polylogarithm li(-n,-4/9) multiplied by (13^(n+1))/9.

Original entry on oeis.org

1, -4, -20, 188, 5260, -6244, -2601620, -32352772, 1819651660, 70205109596, -1222831819220, -150917074955332, -1035896603485940, 350980640716235036, 12868008338514067180, -796662150577236175492
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=9.

Examples

			polylog(-5,-4/9)*13^6/9 = -6244.
		

Crossrefs

Programs

  • Mathematica
    p = 4; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 4, 9)

Formula

See formula in A212846, setting p=4,q=9.

A213146 Polylogarithm li(-n,-5/7) multiplied by (12^(n+1))/7.

Original entry on oeis.org

1, -5, -10, 330, 2760, -82680, -1593360, 40988880, 1552095360, -31261956480, -2267818248960, 29423279911680, 4603691259048960, -17797429029473280, -12287671292043970560, -95184807512707307520
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=7.

Examples

			polylog(-5,-5/7)*12^6/7 = -82680.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 7; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 7)

Formula

See formula in A212846, setting p=5,q=7.
Showing 1-2 of 2 results.