A213158 Positive integers of the form (x+y+z)*x*y*z (x,y,z positive integers).
3, 8, 15, 20, 24, 35, 36, 48, 56, 63, 80, 84, 96, 99, 108, 120, 128, 135, 140, 143, 144, 168, 176, 180, 195, 200, 216, 224, 231, 240, 243, 255, 260, 264, 275, 288, 300, 308, 320, 323, 336, 351, 360, 384, 396, 399, 416, 420, 440, 455, 468, 476, 483, 495, 504
Offset: 1
Keywords
Examples
a(21)=144 for x=1, y=4 and z=4 then the triangle sides are x+y = 5, z+x = 5 and y+z = 8, hence half-perimeter = p = x+y+z = 9 and Heron's formula is checked: area = sqrt(p*(p-5)*(p-5)*(p-8)) = sqrt(144) = 12. 36 = (4^2-2^2) * (2^2-1^2). 63 = (5^2-2^2) * (2^2-1^2) = (5^2-4^2) * (4^2-2^2)= (8^2-1^2) * (1^2-0^2). - _Michael Somos_, May 19 2013
References
- R. D. Carmichael, Diophantine Analysis, Wiley, 1915, p. 9.
Crossrefs
Cf. A188158.
Programs
-
Mathematica
nmax = 25; mx = nmax (nmax + 2); Union[Reap[Do[a = (x + y + z)*x*y*z; If[a <= mx, Sow[a]], {x, 1, nmax}, {y, x, nmax}, {z, y, nmax}]][[2, 1]]]
Comments