A213177 Number T(n,k) of parts in all partitions of n with largest multiplicity k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
0, 0, 1, 0, 1, 2, 0, 3, 0, 3, 0, 3, 5, 0, 4, 0, 5, 6, 4, 0, 5, 0, 8, 9, 7, 5, 0, 6, 0, 10, 13, 13, 5, 6, 0, 7, 0, 13, 23, 14, 15, 6, 7, 0, 8, 0, 18, 30, 27, 16, 13, 7, 8, 0, 9, 0, 25, 44, 33, 30, 18, 15, 8, 9, 0, 10, 0, 30, 58, 55, 36, 34, 15, 17, 9, 10, 0, 11
Offset: 0
Examples
T(6,1) = 8: partitions of 6 with largest multiplicity 1 are [3,2,1], [4,2], [5,1], [6], with 3+2+2+1 = 8 parts. T(6,2) = 9: [2,2,1,1], [3,3], [4,1,1]. T(6,3) = 7: [2,2,2], [3,1,1,1]. T(6,4) = 5: [2,1,1,1,1]. T(6,5) = 0. T(6,6) = 6: [1,1,1,1,1,1]. Triangle begins: 0; 0, 1; 0, 1, 2; 0, 3, 0, 3; 0, 3, 5, 0, 4; 0, 5, 6, 4, 0, 5; 0, 8, 9, 7, 5, 0, 6; 0, 10, 13, 13, 5, 6, 0, 7; 0, 13, 23, 14, 15, 6, 7, 0, 8; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k)))) end: T:= (n, k)-> b(n, n, k)[2] -b(n, n, k-1)[2]: seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[b[n-i*j, i-1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; T[, 0] = 0; T[n, k_] := b[n, n, k][[2]] - b[n, n, k-1][[2]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)