cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213196 Inverse permutation of A211377.

Original entry on oeis.org

1, 4, 2, 3, 5, 6, 11, 7, 8, 12, 13, 9, 10, 14, 15, 22, 16, 17, 23, 24, 18, 19, 25, 26, 20, 21, 27, 28, 37, 29, 30, 38, 39, 31, 32, 40, 41, 33, 34, 42, 43, 35, 36, 44, 45, 56, 46, 47, 57, 58, 48, 49, 59, 60, 50, 51, 61, 62, 52, 53, 63, 64, 54, 55, 65, 66, 79
Offset: 1

Views

Author

Boris Putievskiy, Mar 01 2013

Keywords

Examples

			The start of the sequence as triangle array read by rows:
  1;
  4,2;
  3,5,6;
  11,7,8,12;
  13,9,10,14,15;
  22,16,17,23,24,18;
  19,25,26,20,21,27,28;
  . . .
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of above triangle array.
Last  2*r-1 numbers are from the row number 2*r-1 of above triangle array.
  1;
  4,2,3,5,6;
  11,7,8,12,13,9,10,14,15;
  22,16,17,23,24,18,19,25,26,20,21,27,28;
Row number r contains permutation of 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-3*r+2, 2*r*r-5*r+4, 2*r*r-5*r+5,... 2*r*r-r-1, 2*r*r-r.
		

Crossrefs

Cf. A211377.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    m1=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4
    m2=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4
    result=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

a(n)=(m1+m2-1)*(m1+m2-2)/2+m1, where
m1=(3*i+j-1-(-1)^i+(i+j-2)*(-1)*t)/4,
m2=((1+(-1)^i)*((1+(-1)^j)*2*int((j+2)/4)-(-1+(-1)^j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)^i)*((1+(-1)^j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)^j)*(1+2*int(j/4))))/4,
i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).