A213196 Inverse permutation of A211377.
1, 4, 2, 3, 5, 6, 11, 7, 8, 12, 13, 9, 10, 14, 15, 22, 16, 17, 23, 24, 18, 19, 25, 26, 20, 21, 27, 28, 37, 29, 30, 38, 39, 31, 32, 40, 41, 33, 34, 42, 43, 35, 36, 44, 45, 56, 46, 47, 57, 58, 48, 49, 59, 60, 50, 51, 61, 62, 52, 53, 63, 64, 54, 55, 65, 66, 79
Offset: 1
Keywords
Examples
The start of the sequence as triangle array read by rows: 1; 4,2; 3,5,6; 11,7,8,12; 13,9,10,14,15; 22,16,17,23,24,18; 19,25,26,20,21,27,28; . . . The start of the sequence as array read by rows, the length of row r is 4*r-3. First 2*r-2 numbers are from the row number 2*r-2 of above triangle array. Last 2*r-1 numbers are from the row number 2*r-1 of above triangle array. 1; 4,2,3,5,6; 11,7,8,12,13,9,10,14,15; 22,16,17,23,24,18,19,25,26,20,21,27,28; Row number r contains permutation of 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-3*r+2, 2*r*r-5*r+4, 2*r*r-5*r+5,... 2*r*r-r-1, 2*r*r-r.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Cf. A211377.
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n m1=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4 m2=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4 result=(m1+m2-1)*(m1+m2-2)/2+m1
Formula
a(n)=(m1+m2-1)*(m1+m2-2)/2+m1, where
m1=(3*i+j-1-(-1)^i+(i+j-2)*(-1)*t)/4,
m2=((1+(-1)^i)*((1+(-1)^j)*2*int((j+2)/4)-(-1+(-1)^j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)^i)*((1+(-1)^j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)^j)*(1+2*int(j/4))))/4,
i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).