cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216252 A213196 as table read layer by layer clockwise.

Original entry on oeis.org

1, 4, 5, 2, 3, 7, 10, 8, 6, 11, 9, 17, 20, 23, 14, 12, 13, 16, 26, 38, 43, 39, 21, 24, 15, 22, 25, 30, 42, 58, 63, 48, 35, 31, 27, 18, 19, 29, 34, 57, 53, 69, 76, 70, 64, 49, 36, 32, 28, 37, 33, 47, 52, 81, 75, 95, 102, 109, 88, 82, 54, 59, 44, 40, 41, 46, 62
Offset: 1

Views

Author

Boris Putievskiy, Mar 15 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1).
The order of the list:
T(1,1)=1;
T(1,2), T(2,2), T(2,1);
. . .
T(1,n), T(2,n), ... T(n-1,n), T(n,n), T(n,n-1), ... T(n,1);
. . .

Examples

			The start of the sequence as table:
  1....4...3..11..13...
  2....5...7...9..16...
  6....8..10..17..26...
  12..14..23..20..38...
  15..24..21..39..43...
  . . .
The start of the sequence as triangular array read by rows:
  1;
  4,5,2;
  3,7,10,8,6;
  11,9,17,20,23,14,12;
  13,16,26,38,43,39,21,24,15;
  . . .
Row number r contains 2*r-1 numbers.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(n-1)))+1
    i=min(t,n-(t-1)**2)
    j=min(t,t**2-n+1)
    m1=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4
    m2=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4
    m=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

a(n) = (m1+m2-1)*(m1+m2-2)/2+m1, where m1=(3*i+j-1-(-1)^i+(i+j-2)*(-1)^(i+j))/4, m2=((1+(-1)^i)*((1+(-1)^j)*2*int((j+2)/4)-(-1+(-1)^j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)^i)*((1+(-1)^j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)^j)*(1+2*int(j/4))))/4, i=min(t; n-(t-1)^2), j=min(t; t^2-n+1), t=floor(sqrt(n-1))+1.

A216253 A213196 as table read layer by layer - layer clockwise, layer counterclockwise and so on.

Original entry on oeis.org

1, 2, 5, 4, 3, 7, 10, 8, 6, 12, 14, 23, 20, 17, 9, 11, 13, 16, 26, 38, 43, 39, 21, 24, 15, 18, 27, 31, 35, 48, 63, 58, 42, 30, 25, 22, 19, 29, 34, 57, 53, 69, 76, 70, 64, 49, 36, 32, 28, 40, 44, 59, 54, 82, 88, 109, 102, 95, 75, 81, 52, 47, 33, 37, 41, 46, 62
Offset: 1

Views

Author

Boris Putievskiy, Mar 15 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Table read by boustrophedonic ("ox-plowing") method.
Let m be natural number. The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2);
. . .
T(1,2*m+1), T(2,2*m+1), ... T(2*m,2*m+1), T(2*m+1,2*m+1), T(2*m+1,2*m), ... T(2*m+1,1);
T(2*m,1), T(2*m,2), ... T(2*m,2*m-1), T(2*m,2*m), T(2*m-1,2*m), ... T(1,2*m);
. . .
The first row is layer read clockwise, the second row is layer counterclockwise.

Examples

			The start of the sequence as table:
  1....4...3..11..13...
  2....5...7...9..16...
  6....8..10..17..26...
  12..14..23..20..38...
  15..24..21..39..43...
  . . .
The start of the sequence as triangular array read by rows:
  1;
  2,5,4;
  3,7,10,8,6;
  12,14,23,20,17,9,11;
  13,16,26,38,43,39,21,24,15;
  . . .
Row number r contains 2*r-1 numbers.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(n-1)))+1
    i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)
    j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2)
    m1=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4
    m2=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4
    m=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

a(n) = (m1+m2-1)*(m1+m2-2)/2+m1, where m1=(3*i+j-1-(-1)^i+(i+j-2)*(-1)^(i+j))/4, m2=((1+(-1)^i)*((1+(-1)^j)*2*int((j+2)/4)-(-1+(-1)^j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)^i)*((1+(-1)^j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)^j)*(1+2*int(j/4))))/4, i=(t mod 2)*min(t; n-(t-1)^2) + (t+1 mod 2)*min(t; t^2-n+1), j=(t mod 2)*min(t; t^2-n+1) + (t+1 mod 2)*min(t; n-(t-1)^2), t=floor(sqrt(n-1))+1.
Showing 1-2 of 2 results.