A213205 T(n,k) = ((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2; n , k > 0, read by antidiagonals.
1, 5, 4, 2, 3, 6, 10, 9, 14, 13, 7, 8, 11, 12, 15, 19, 18, 23, 22, 27, 26, 16, 17, 20, 21, 24, 25, 28, 32, 31, 36, 35, 40, 39, 44, 43, 29, 30, 33, 34, 37, 38, 41, 42, 45, 49, 48, 53, 52, 57, 56, 61, 60, 65, 64, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 70
Offset: 1
Examples
The start of the sequence as table: 1....5...2..10...7..19..16... 4....3...9...8..18..17..31... 6...14..11..23..20..36..33... 13..12..22..21..35..34..52... 15..27..24..40..37..57..54... 26..25..39..38..56..55..77... 28..44..41..61..58..82..79... . . . The start of the sequence as triangle array read by rows: 1; 5,4; 2,3,6; 10,9,14,13; 7,8,11,12,15; 19,18,23,22,27,26; 16,17,20,21,24,25,28; . . . The start of the sequence as array read by rows, the length of row r is 4*r-3. First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above. Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above. 1; 5,4,2,3,6; 10,9,14,13,7,8,11,12,15; 19,18,23,22,27,26,16,17,20,21,24,25,28; . . . Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-5*r+7, 2*r*r-5*r+6,...2*r*r-r-4, 2*r*r-r-3, 2*r*r-r.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Maple
T:=(n,k)->((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2: seq(seq(T(k,n-k),k=1..n-1),n=1..13); # Muniru A Asiru, Dec 06 2018
-
Mathematica
T[n_, k_] := ((n+k)^2 - 4k + 3 + (-1)^k - 2(-1)^n - (n+k)(-1)^(n+k))/2; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n result=((t+2)**2-4*j+3+(-1)**j-2*(-1)**i-(t+2)*(-1)**t)/2
Formula
As table
T(n,k) = ((k+n)^2-4*k+3+(-1)^k-2*(-1)^n-(k+n)*(-1)^(k+n))/2.
As linear sequence
a(n) = (A003057(n)^2-4*A004736(n)+3+(-1)^A004736(n)-2*(-1)^A002260(n)-A003057(n)*(-1)^A003056(n))/2;
a(n) = ((t+2)^2-4*j+3+(-1)^j-2*(-1)^i-(t+2)*(-1)^t)/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Comments