cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A221637 Numbers n such that (15^n + 14^n)/29 is prime.

Original entry on oeis.org

3, 127, 227, 1009, 1951, 5101, 14011
Offset: 1

Views

Author

Robert Price, May 28 2013

Keywords

Comments

All terms are prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (15^# + 14^#)/29 ]& ]
  • PARI
    is(n)=ispseudoprime((15^n+14^n)/29) \\ Charles R Greathouse IV, Feb 20 2017

A185239 Numbers k such that (11^k + 10^k)/21 is prime.

Original entry on oeis.org

53, 421, 647, 1601, 35527
Offset: 1

Views

Author

Robert Price, Apr 05 2013

Keywords

Comments

All terms are prime.
a(6) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (11^# + 10^#)/21 ]& ]
  • PARI
    is(n)=ispseudoprime((11^n+10^n)/21) \\ Charles R Greathouse IV, May 22 2017

A225097 Numbers n such that (13^n + 12^n)/25 is prime.

Original entry on oeis.org

3, 11, 13, 43, 67, 109, 15101, 43997
Offset: 1

Views

Author

Robert Price, Apr 27 2013

Keywords

Comments

All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (13^# + 12^#)/25 ]& ]
  • PARI
    is(n)=ispseudoprime((13^n+12^n)/25) \\ Charles R Greathouse IV, May 22 2017

A224984 Numbers n such that (14^n + 13^n)/27 is prime.

Original entry on oeis.org

7, 13, 311, 1637, 4363, 10433, 41669, 45631
Offset: 1

Views

Author

Robert Price, Apr 22 2013

Keywords

Comments

All terms are prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (14^# + 13^#)/27 ]& ]
  • PARI
    forprime(p=3,10^6, if(ispseudoprime((14^p + 13^p)/27), print1(p,", ") ) ); \\ Joerg Arndt, Jul 29 2013

Extensions

Removed incorrect first term of "2".

A247244 Smallest prime p such that (n^p + (n+1)^p)/(2n+1) is prime, or -1 if no such p exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 7, 3, 7, 53, 47, 3, 7, 3, 3, 41, 3, 5, 11, 3, 3, 11, 11, 3, 5, 103, 3, 37, 17, 7, 13, 37, 3, 269, 17, 5, 17, 3, 5, 139, 3, 11, 78697, 5, 17, 3671, 13, 491, 5, 3, 31, 43, 7, 3, 7, 2633, 3, 7, 3, 5, 349, 3, 41, 31, 5, 3, 7, 127, 3, 19, 3, 11, 19, 101, 3, 5, 3, 3
Offset: 1

Views

Author

Eric Chen, Nov 28 2014

Keywords

Comments

All terms are odd primes.
a(79) > 10000, if it exists.
a(80)..a(93) = {3, 7, 13, 7, 19, 31, 13, 163, 797, 3, 3, 11, 13, 5}, a(95)..a(112) = {5, 2657, 19, 787, 3, 17, 3, 7, 11, 1009, 3, 61, 53, 2371, 5, 3, 3, 11}, a(114)..a(126) = {103, 461, 7, 3, 13, 3, 7, 5, 31, 41, 23, 41, 587}, a(128)..a(132) = {7, 13, 37, 3, 23}, a(n) is currently unknown for n = {79, 94, 113, 127, 133, ...} (see the status file under Links).

Examples

			a(10) = 53 because (10^p + 11^p)/21 is composite for all p < 53 and prime for p = 53.
		

Crossrefs

Programs

  • Mathematica
    lmt = 4200; f[n_] := Block[{p = 2}, While[p < lmt && !PrimeQ[((n + 1)^p + n^p)/(2n + 1)], p = NextPrime@ p]; If[p > lmt, 0, p]]; Do[Print[{n, f[n] // Timing}], {n, 1000}] (* Robert G. Wilson v, Dec 01 2014 *)
  • PARI
    a(n)=forprime(p=3, , if(ispseudoprime((n^p+(n+1)^p)/(2*n+1)), return(p)))

Formula

a(n) = 3 if and only if n^2 + n + 1 is a prime (A002384).

Extensions

a(43) from Aurelien Gibier, Nov 27 2023

A301510 Smallest positive number b such that ((b+1)^prime(n) + b^prime(n))/(2*b + 1) is prime, or 0 if no such b exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 16, 1, 11, 6, 37, 1, 9, 120, 9, 1, 2, 67, 16, 1, 26, 103, 12, 60, 1, 239, 4, 40, 2, 44, 174, 33, 1, 3, 260, 114, 1, 161, 70, 1, 3, 2, 3, 50, 45, 472, 228, 183, 66, 37, 7, 122, 235, 68, 102, 294, 8, 13, 1, 40, 62, 143, 1, 61, 7
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Mar 22 2018

Keywords

Comments

Conjecture: a(n) > 0 for every n > 1.
Records: 1, 4, 16, 37, 120, 239, 260, 472, 917, 1539, 6633, 7050, 12818, ..., which occur at n = 2, 10, 13, 17, 20, 32, 41, 52, 72, 128, 171, 290, 309, ... - Robert G. Wilson v, Jun 16 2018

Examples

			a(10) = 4 because (5^29 + 4^29)/9 = 2149818248341 is prime and (2^29 + 1^29)/3, (3^29 + 2^29)/5 and (4^29 + 3^29)/7 are all composite.
		

Crossrefs

Numbers n such that ((b+1)^n + b^n)/(2*b + 1) is prime for b = 1 to 18: A000978, A057469, A128066, A128335, A128336, A187805, A181141, A187819, A217095, A185239, A213216, A225097, A224984, A221637, A227170, A228573, A227171, A225818.

Programs

  • Mathematica
    Table[p = Prime[n]; k = 1; While[q = ((b+1)^n+b^n)/(2*b+1); ! PrimeQ[q], k++]; k, {n, 200}]
    f[n_] := Block[{b = 1, p = Prime@ n}, While[! PrimeQ[((b +1)^p + b^p)/(2b +1)], b++]; b]; Array[f, 70, 2] (* Robert G. Wilson v, Jun 13 2018 *)
  • PARI
    for(n=2, 200, b=0; until(isprime((((b+1)^prime(n)+b^prime(n))/(2*b+1))), b++); print1(b,", ")) \\ corrected by Eric Chen, Jun 06 2018

Formula

a(n) = A250201(2*prime(n)) - 1 for n >= 2. - Eric Chen, Jun 06 2018
Showing 1-6 of 6 results.