A213283 Number of 4-length words w over n-ary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
0, 1, 9, 36, 118, 315, 711, 1414, 2556, 4293, 6805, 10296, 14994, 21151, 29043, 38970, 51256, 66249, 84321, 105868, 131310, 161091, 195679, 235566, 281268, 333325, 392301, 458784, 533386, 616743, 709515, 812386, 926064, 1051281, 1188793, 1339380, 1503846
Offset: 0
Examples
a(0) = 0: no word of length 4 is possible for an empty alphabet. a(1) = 1: aaaa for alphabet {a}. a(2) = 9: aaaa, aaab, aaba, aabb, abaa, abab, baaa, baab, bbbb for alphabet {a,b}. a(3) = 36: aaaa, aaab, aaac, aaba, aabb, aabc, aaca, aacb, aacc, abaa, abab, abac, abca, acaa, acab, acac, acba, baaa, baab, baac, baca, bbbb, bbbc, bbcb, bbcc, bcaa, bcbb, bcbc, caaa, caab, caac, caba, cbaa, cbbb, cbbc, cccc for alphabet {a,b,c}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Row n=4 of A213276.
Programs
-
Maple
a:= n-> n*(-9+(17+(-8+2*n)*n)*n)/2: seq(a(n), n=0..40);
Formula
a(n) = n*(-9+17*n-8*n^2+2*n^3)/2.
G.f.: x*(1+4*x+x^2+18*x^3)/(1-x)^5.