A213284 Number of 5-length words w over n-ary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
0, 1, 14, 74, 276, 895, 2506, 6104, 13224, 26061, 47590, 81686, 133244, 208299, 314146, 459460, 654416, 910809, 1242174, 1663906, 2193380, 2850071, 3655674, 4634224, 5812216, 7218725, 8885526, 10847214, 13141324, 15808451, 18892370, 22440156, 26502304
Offset: 0
Examples
a(0) = 0: no word of length 5 is possible for an empty alphabet. a(1) = 1: aaaaa for alphabet {a}. a(2) = 14: aaaaa, aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, baaaa, baaab, baaba, bbbbb for alphabet {a,b}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Row n=5 of A213276.
Programs
-
Maple
a:= n-> n*(94+(-204+(155+(-45+6*n)*n)*n)*n)/6: seq(a(n), n=0..40);
Formula
a(n) = n*(94-204*n+155*n^2-45*n^3+6*n^4)/6.
G.f.: x*(1+8*x+5*x^2+22*x^3+84*x^4)/(1-x)^6.