cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213285 Number of 6-length words w over n-ary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.

Original entry on oeis.org

0, 1, 27, 165, 712, 2535, 8151, 23527, 60600, 140517, 297595, 584001, 1075152, 1875835, 3127047, 5013555, 7772176, 11700777, 17167995, 24623677, 34610040, 47773551, 64877527, 86815455, 114625032, 149502925, 192820251, 246138777, 311227840, 390081987, 484939335
Offset: 0

Views

Author

Alois P. Heinz, Jun 08 2012

Keywords

Examples

			a(0) = 0: no word of length 6 is possible for an empty alphabet.
a(1) = 1: aaaaaa for alphabet {a}.
a(2) = 27: aaaaaa, aaaaab, aaaaba, aaaabb, aaabaa, aaabab, aaabba, aaabbb, aabaaa, aabaab, aababa, aababb, aabbaa, aabbab, abaaaa, abaaab, abaaba, abaabb, ababaa, ababab, baaaaa, baaaab, baaaba, baaabb, baabaa, baabab, bbbbbb for alphabet {a,b}.
		

Crossrefs

Row n=6 of A213276.

Programs

  • Maple
    a:= n-> n*(-332+(757+(-632+(255+(-48+4*n)*n)*n)*n)*n)/4:
    seq(a(n), n=0..40);

Formula

a(n) = n*(-332+757*n-632*n^2+255*n^3-48*n^4+4*n^5)/4.
G.f.: x*(1+20*x-3*x^2+89*x^3+106*x^4+507*x^5) / (1-x)^7.