A213285 Number of 6-length words w over n-ary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
0, 1, 27, 165, 712, 2535, 8151, 23527, 60600, 140517, 297595, 584001, 1075152, 1875835, 3127047, 5013555, 7772176, 11700777, 17167995, 24623677, 34610040, 47773551, 64877527, 86815455, 114625032, 149502925, 192820251, 246138777, 311227840, 390081987, 484939335
Offset: 0
Examples
a(0) = 0: no word of length 6 is possible for an empty alphabet. a(1) = 1: aaaaaa for alphabet {a}. a(2) = 27: aaaaaa, aaaaab, aaaaba, aaaabb, aaabaa, aaabab, aaabba, aaabbb, aabaaa, aabaab, aababa, aababb, aabbaa, aabbab, abaaaa, abaaab, abaaba, abaabb, ababaa, ababab, baaaaa, baaaab, baaaba, baaabb, baabaa, baabab, bbbbbb for alphabet {a,b}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Row n=6 of A213276.
Programs
-
Maple
a:= n-> n*(-332+(757+(-632+(255+(-48+4*n)*n)*n)*n)*n)/4: seq(a(n), n=0..40);
Formula
a(n) = n*(-332+757*n-632*n^2+255*n^3-48*n^4+4*n^5)/4.
G.f.: x*(1+20*x-3*x^2+89*x^3+106*x^4+507*x^5) / (1-x)^7.