A213286 Number of 7-length words w over n-ary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
0, 1, 46, 367, 1805, 7280, 25781, 83916, 250062, 676155, 1662160, 3748261, 7839811, 15370082, 28505855, 50400890, 85502316, 139914981, 221828802, 342014155, 514390345, 756672196, 1091099801, 1545256472, 2152979930, 2955371775, 4001910276, 5351671521
Offset: 0
Examples
a(0) = 0: no word of length 7 is possible for an empty alphabet. a(1) = 1: aaaaaaa for alphabet {a}. a(2) = 46: aaaaaaa, aaaaaab, aaaaaba, aaaaabb, aaaabaa, aaaabab, aaaabba, aaaabbb, aaabaaa, aaabaab, aaababa, aaababb, aaabbaa, aaabbab, aaabbba, aabaaaa, aabaaab, aabaaba, aabaabb, aababaa, aababab, aababba, aabbaaa, aabbaab, aabbaba, abaaaaa, abaaaab, abaaaba, abaaabb, abaabaa, abaabab, abaabba, ababaaa, ababaab, abababa, baaaaaa, baaaaab, baaaaba, baaaabb, baaabaa, baaabab, baaabba, baabaaa, baabaab, baababa, bbbbbbb for alphabet {a,b}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Row n=7 of A213276.
Programs
-
Maple
a:= n-> n*(11954+ (-29577 +(27640 +(-12831+(3234+(-420+24*n)*n) *n) *n) *n) *n)/24: seq(a(n), n=0..40);
Formula
a(n) = n*(11954-29577*n+27640*n^2-12831*n^3+3234*n^4-420*n^5+24*n^6)/24.
G.f.: x*(1+38*x+27*x^2+101*x^3+610*x^4+693*x^5+3570*x^6)/(1-x)^8.