A213290 Number of n-length words w over binary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
1, 2, 4, 5, 9, 14, 27, 46, 91, 162, 323, 589, 1177, 2179, 4357, 8152, 16303, 30746, 61491, 116689, 233377, 445095, 890189, 1704795, 3409589, 6552379, 13104757, 25258601, 50517201, 97617061, 195234121, 378098956, 756197911, 1467343306, 2934686611, 5704370761
Offset: 0
Keywords
Examples
a(0) = 1: the empty word. a(1) = 2: a, b for alphabet {a,b}. a(2) = 4: aa, ab, ba, bb. a(3) = 5: aaa, aab, aba, baa, bbb. a(4) = 9: aaaa, aaab, aaba, aabb, abaa, abab, baaa, baab, bbbb. a(5) = 14: aaaaa, aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, baaaa, baaab, baaba, bbbbb.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= n-> `if`(n<0, 0, binomial(n, ceil(n/2))): a:= n-> b(n) +b(n-2) +`if`(n>0, 1, 0): seq(a(n), n=0..40);