A213291 Number of n-length words w over ternary alphabet such that for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
1, 3, 9, 18, 36, 74, 165, 367, 869, 2074, 5168, 13026, 33749, 88368, 235389, 632324, 1717202, 4693604, 12921864, 35751336, 99416633, 277527448, 777659128, 2185854247, 6162168724, 17416305904, 49342480077, 140094014788, 398558682310, 1135962971848
Offset: 0
Keywords
Examples
a(0) = 1: the empty word. a(1) = 3: a, b, c for alphabet {a,b,c}. a(2) = 9: aa, ab, ac, ba, bb, bc, ca, cb, cc. a(3) = 18: aaa, aab, aac, aba, abc, aca, acb, baa, bac, bbb, bbc, bca, bcb, caa, cab, cba, cbb, ccc.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Column k=3 of A213276.