A213375 Irregular array T(n,k) of numbers/2 of non-extendable (complete) non-self-adjacent simple paths of each length within a square lattice bounded by rectangles with nodal dimensions n and 5, n >= 2.
4, 4, 6, 10, 10, 2, 4, 8, 16, 22, 42, 24, 42, 22, 18, 4, 8, 20, 40, 72, 80, 90, 66, 184, 72, 236, 26, 4, 8, 20, 44, 100, 136, 220, 156, 348, 244, 800, 336, 1308, 248, 56, 4, 8, 20, 44, 106, 172, 322, 410, 612, 602, 1462, 1122, 3240, 1712, 4682, 1394, 706, 218, 4
Offset: 2
Examples
T(2,3) = One half of the number of complete non-self-adjacent simple paths of length 3 nodes within a square lattice bounded by a 2 X 5 node rectangle.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Comments