A213343 1-quantum transitions in systems of N spin 1/2 particles, in columns by combination indices. Triangle read by rows, T(n, k) for n >= 1 and 0 <= k <= floor((n-1)/2).
1, 4, 12, 3, 32, 24, 80, 120, 10, 192, 480, 120, 448, 1680, 840, 35, 1024, 5376, 4480, 560, 2304, 16128, 20160, 5040, 126, 5120, 46080, 80640, 33600, 2520, 11264, 126720, 295680, 184800, 27720, 462, 24576, 337920, 1013760, 887040, 221760, 11088
Offset: 1
Examples
T(1;3,1) = 3 because the only transitions compatible with q=1,k=1 are (001,110),(010,101),(100,011). Starting rows of the triangle T(1;N,k): N | k = 0, 1, ..., floor((N-1)/2) 1 | 1 2 | 4 3 | 12 3 4 | 32 24 5 | 80 120 10
References
- R. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Clarendon Press, 1987, Chapters 2-6.
- M. H. Levitt, Spin Dynamics, J.Wiley & Sons, 2nd Ed.2007, Part3 (Section 6).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2550
- Stanislav Sykora, T(1;N,k) with rows N=1,..,100 and columns k=0,..,floor((N-1)/2)
- S. Sykora, p-Quantum Transitions and a Combinatorial Identity, Stan's Library, II, Aug 2007.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Crossrefs
Programs
-
Maple
egf := exp(2*x*y) * BesselI(1, 2*x): ser := series(egf, x, 32): cx := n -> coeff(ser, x, n): Trow := n -> n!*seq(coeff(cx(n), y, n - 2*k - 1), k = 0..floor((n-1)/2)): seq(print([n], Trow(n)), n = 1..12); # Peter Luschny, May 12 2021
-
Mathematica
With[{q = 1}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 11}, {k, 0, Floor[(n - 1)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
PARI
TNQK(N, q, k)={binomial(N, k)*binomial(N-k, q+k)*2^((N-k)-(q+k))} TQ(Nmax, q)={vector(Nmax-q+1, n, vector(1+(n-1)\2, k, TNQK(n+q-1, q, k-1)))} { concat(TQ(13, 1)) } \\ simplified by Andrew Howroyd, May 12 2021
Formula
Set q = 1 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
T(n, k) = n! * [y^(n-2*k-1)] [x^n] exp(2*x*y)*BesselI(1, 2*x). - Peter Luschny, May 12 2021
Comments