A213351 9-quantum transitions in systems of N >= 9 spin 1/2 particles, in columns by combination indices.
1, 20, 220, 11, 1760, 264, 11440, 3432, 78, 64064, 32032, 2184, 320320, 240240, 32760, 455, 1464320, 1537536, 349440, 14560, 6223360, 8712704, 2970240, 247520, 2380, 24893440, 44808192, 21385728, 2970240, 85680, 94595072, 212838912, 135442944, 28217280
Offset: 9
Examples
Starting rows of the triangle: N | k = 0, 1, ..., floor((N-9)/2) ---+------------------------------ 9 | 1 10 | 20 11 | 220 11 12 | 1760 264 13 | 11440 3432 78
References
- See A213343
Links
- Stanislav Sykora, Table of n, a(n) for n = 9..2170
- Stanislav Sykora, T(9;N,k) with rows N = 9..100 and columns k = 0..floor((N-9)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Crossrefs
Programs
-
Mathematica
With[{q = 9}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
-
PARI
\\ See A213343; set thisq = 9
Formula
Set q = 9 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Comments