A213358 a(n) = maximum(continuedfraction(F(n+1)^n/F(n)^n)) - L(n) + (1-(-1)^n)/2, where F(n) is Fibonacci(n) and L(n) is the n-th Lucas number.
1, 1, 0, 4, 7, 16, 0, 0, 397, 17, 0, 8047, 0, 0, 0, 0, 0, 0, 0, 6633, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Max[ContinuedFraction[Fibonacci[n+1]^n/Fibonacci[n]^n]] - LucasL[n] + (1 - (-1)^n)/2, {n, 200}] (* T. D. Noe, Jun 28 2012 *)
-
PARI
F(n) = fibonacci(n); L(n) = F(n-1) + F(n+1); a(n) = vecmax(contfrac(F(n+1)^n/F(n)^n)) - L(n) + (1-(-1)^n)/2;
Comments