cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A268189 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of the parts larger than the smallest part is k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 2, 0, 2, 0, 1, 3, 0, 1, 1, 2, 0, 1, 2, 2, 4, 0, 1, 1, 3, 2, 2, 0, 1, 2, 3, 3, 4, 4, 0, 1, 1, 3, 3, 6, 4, 3, 0, 1, 2, 2, 4, 5, 6, 7, 4, 0, 1, 1, 4, 2, 7, 5, 10, 8, 2, 0, 1, 2, 2, 4, 5, 7, 9, 12, 12, 6, 0, 1, 1, 3, 2, 7, 5, 11, 10, 17, 14, 2, 0, 1, 2, 3, 4, 4, 8, 8, 13, 15, 20, 21
Offset: 1

Views

Author

Emeric Deutsch, Feb 01 2016

Keywords

Comments

Sum of entries in row n is A000041(n).
T(n,0) = A000005(n) = number of divisors of n.
Sum_{k>0} k*T(n,k) = A213359(n).

Examples

			T(5,3) = 2 because in the partitions [1,1,3] and [2,3] of 5 the sum of the parts larger than the smallest part is 3.
Triangle starts:
  1;
  2, 0;
  2, 0, 1;
  3, 0, 1, 1;
  2, 0, 1, 2, 2;
  4, 0, 1, 1, 3, 2;
  2, 0, 1, 2, 3, 3, 4;
  4, 0, 1, 1, 3, 3, 6, 4;
  3, 0, 1, 2, 2, 4, 5, 6,  7;
  4, 0, 1, 1, 4, 2, 7, 5, 10,  8;
  2, 0, 1, 2, 2, 4, 5, 7,  9, 12, 12;
  6, 0, 1, 1, 3, 2, 7, 5, 11, 10, 17, 14;
		

Crossrefs

Programs

  • Maple
    g := add(x^i/((1-x^i)*mul(1-t^j*x^j, j = i+1 .. 100)), i = 1 .. 100); gser := simplify(series(g, x = 0, 30)); for n to 18 do P[n] := sort(coeff(gser, x, n)) end do; for n to 18 do seq(coeff(P[n], t, j), j = 0 .. n-1) end do
    # second Maple program:
    b:= proc(n, i) option remember; expand(`if`(irem(n, i)=0, 1, 0)
           +`if`(i>1, add(b(n-i*j, i-1)*x^(i*j), j=0..(n-1)/i), 0))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Feb 04 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[Mod[n, i] == 0, 1, 0] + If[i > 1, Sum[b[n - i*j, i - 1]*x^(i*j), {j, 0, (n - 1)/i}], 0]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n - 1}]][b[n, n]];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 21 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Sum_{i>0} x^i/((1-x^i)*Product_{j>i} (1-t^j*x^j)).
Showing 1-1 of 1 results.