A213387 a(n) = 5*2^(n-1) - 2 - 3*n.
0, 2, 9, 26, 63, 140, 297, 614, 1251, 2528, 5085, 10202, 20439, 40916, 81873, 163790, 327627, 655304, 1310661, 2621378, 5242815, 10485692, 20971449, 41942966, 83886003, 167772080, 335544237, 671088554, 1342177191
Offset: 1
Examples
For n=5, m(5,1)=16, m(4,2)=15, m(3,3)=11, m(2,4)=11, m(1,5)=10 gives the sum 63 = 2*A000295(4) + A095151(4) = 2*11 + 41.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Joseph Breen and Emma Copeland, Non-orientable Nurikabe, arXiv:2506.12612 [math.CO], 2025. See pp. 1, 4.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Mathematica
Table[5*2^(n-1)-2-3n,{n,30}] (* or *) LinearRecurrence[{4,-5,2},{0,2,9},30] (* Harvey P. Dale, Sep 28 2012 *)
Formula
G.f.: x^2*(2+x) / ( (1-2*x)*(1-x)^2 ). - R. J. Mathar, Jun 29 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3); a(1)=0, a(2)=2, a(3)=9. - Harvey P. Dale, Sep 28 2012
Comments