cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213387 a(n) = 5*2^(n-1) - 2 - 3*n.

Original entry on oeis.org

0, 2, 9, 26, 63, 140, 297, 614, 1251, 2528, 5085, 10202, 20439, 40916, 81873, 163790, 327627, 655304, 1310661, 2621378, 5242815, 10485692, 20971449, 41942966, 83886003, 167772080, 335544237, 671088554, 1342177191
Offset: 1

Views

Author

J. M. Bergot, Jun 28 2012

Keywords

Comments

Create an array m(i,j) as follows: m(1,j) = j*(j-1)/2 in the top row, m(i,1) = (i-1)^2 in the left column, and m(i,j) = m(i,j-1) + m(i-1,j) recursively in the main body, j >= 1, i >= 1. The sum of the terms in an antidiagonal is one term in this sequence, a(n) = Sum_{k=1..n} m(n-k+1,k).

Examples

			For n=5, m(5,1)=16, m(4,2)=15, m(3,3)=11, m(2,4)=11, m(1,5)=10 gives the sum 63 = 2*A000295(4) + A095151(4) = 2*11 + 41.
		

Crossrefs

Programs

  • Mathematica
    Table[5*2^(n-1)-2-3n,{n,30}] (* or *) LinearRecurrence[{4,-5,2},{0,2,9},30] (* Harvey P. Dale, Sep 28 2012 *)

Formula

a(n) = A095151(n-1) + 2*A000295(n-1).
G.f.: x^2*(2+x) / ( (1-2*x)*(1-x)^2 ). - R. J. Mathar, Jun 29 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3); a(1)=0, a(2)=2, a(3)=9. - Harvey P. Dale, Sep 28 2012