cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213391 Number of (w,x,y) with all terms in {0,...,n} and 2*max(w,x,y) < 3*min(w,x,y).

Original entry on oeis.org

0, 1, 2, 3, 10, 17, 24, 43, 62, 81, 118, 155, 192, 253, 314, 375, 466, 557, 648, 775, 902, 1029, 1198, 1367, 1536, 1753, 1970, 2187, 2458, 2729, 3000, 3331, 3662, 3993, 4390, 4787, 5184, 5653, 6122, 6591, 7138, 7685, 8232, 8863, 9494, 10125
Offset: 0

Views

Author

Clark Kimberling, Jun 11 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Also the number of (w,x,y) with all terms in {0,...,n-1} and 2*max(w,x,y) <= 3*min(w,x,y).

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2*Max[w, x, y] < 3*Min[w, x, y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 45]]   (* A213391 *)

Formula

a(n) + A213392(n) = (n+1)^3.
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) - a(n-5) + 2*a(n-6) - a(n-7).
G.f.: (x + 4*x^4 + x^7)/(((1 - x)^4)*(1 + x + x^2)^2).
a(n) = (n^3 + 6*n*(((n+1) mod 3 + 1) mod 2) - 2 + 2*((n+1) mod 3))/9. - Ayoub Saber Rguez, Feb 01 2022
From Jon E. Schoenfield, Feb 02 2022: (Start)
a(n) = n^3/9 if n == 0 (mod 3),
(n^3 + 6*n + 2)/9 if n == 1 (mod 3),
(n^3 + 6*n - 2)/9 if n == 2 (mod 3).
(End)