cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213503 Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 6, 2, 20, 11, 3, 50, 34, 16, 4, 105, 80, 48, 21, 5, 196, 160, 110, 62, 26, 6, 336, 287, 215, 140, 76, 31, 7, 540, 476, 378, 270, 170, 90, 36, 8, 825, 744, 616, 469, 325, 200, 104, 41, 9, 1210, 1110, 948, 756, 560, 380, 230, 118, 46, 10
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2012

Keywords

Comments

Principal diagonal: A117066
Antidiagonal sums: A033455
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....6....20....50....105....196...336
2....11...34....80....160....287...476
3....16...48....110...215....378...616
4....21...62....140...270....469...756
5....26...76....170...325....560...896
...
T(5,1) = (1)**(5) = 5
T(5,2) = (1,4)**(5,6) = 1*6+4*5 = 26
T(5,3) = (1,4,9)**(5,6,7) = 1*7+4*6+9*5 = 76
		

Crossrefs

Cf. A213500.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> (n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12))); # G. C. Greubel, Jul 05 2019
  • Magma
    [[(n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 05 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n^2; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213503 *)
    r[n_]:= Table[T[n, k], {k,40}]  (* columns of antidiagonal triangle *)
    d = Table[T[n, n], {n, 1, 40}] (* A117066 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A033455 *)
    (* Second program *)
    Table[(n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 05 2019 *)
  • PARI
    t(n,k) = (n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12;
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 05 2019
    
  • Sage
    [[(n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 05 2019
    

Formula

T(n,k) = 5*T(n,k-1) - 10*T(n,k-2) + 10*T(n,k-3) - 5*T(n,k-4) + T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = n + x - (n - 1)^2 x^2 and g(x) = (1 - x)^5.
T(n,k) = k*(k^3 + 4*k^2*n + 6*k*n - k + 2*n)/12. - G. C. Greubel, Jul 05 2019