A213551 Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.
1, 6, 3, 21, 15, 6, 56, 46, 28, 10, 126, 111, 81, 45, 15, 252, 231, 186, 126, 66, 21, 462, 434, 371, 281, 181, 91, 28, 792, 756, 672, 546, 396, 246, 120, 36, 1287, 1242, 1134, 966, 756, 531, 321, 153, 45, 2002, 1947, 1812, 1596, 1316, 1001, 686, 406
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....6....21....56....126....252 3....15...46....111...231....434 6....28...81....186...371....672 10...45...126...281...546....966 15...66...181...396...756....1316 21...91...246...531...1001...1722
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Crossrefs
Cf. A213500.
Programs
-
Mathematica
b[n_] := n (n + 1)/2; c[n_] := n (n + 1)/2 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] r[n_] := Table[t[n, k], {k, 1, 60}] (* A213551 *) d = Table[t[n, n], {n, 1, 40}] (* A213552 *) s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A051923 *)
Formula
T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n*(n+1) - 2*((n-1)^2)*x + 2*(n-1)*x^2 and g(x) = 2*(1 - x)^2.
Comments