A213552
Principal diagonal of the convolution array A213551.
Original entry on oeis.org
1, 15, 81, 281, 756, 1722, 3486, 6462, 11187, 18337, 28743, 43407, 63518, 90468, 125868, 171564, 229653, 302499, 392749, 503349, 637560, 798974, 991530, 1219530, 1487655, 1800981, 2164995, 2585611, 3069186, 3622536, 4252952
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Original entry on oeis.org
1, 9, 42, 140, 378, 882, 1848, 3564, 6435, 11011, 18018, 28392, 43316, 64260, 93024, 131784, 183141, 250173, 336490, 446292, 584430, 756470, 968760, 1228500, 1543815, 1923831, 2378754, 2919952, 3560040, 4312968, 5194112, 6220368, 7410249, 8783985, 10363626
Offset: 0
From the third formula: a(4) = 15+60+108+120+75 = 378. - _Bruno Berselli_, Sep 04 2013
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Cf.
A093560 ((3, 1) Pascal, column m=6).
-
[Binomial(n+5, 5)*(n+2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 27 2018
-
CoefficientList[Series[(1 + 2 x)/(1 - x)^7, {x, 0, 25}], x] (* Harvey P. Dale, Mar 13 2011 *)
Nest[Accumulate,Range[1,120,3],5] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
Table[Binomial[n + 5, 5] (n + 2) / 2, {n, 0, 35}] (* Vincenzo Librandi, Dec 27 2018 *)
Showing 1-3 of 3 results.
Comments