cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213553 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^3, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 10, 8, 46, 43, 27, 146, 142, 118, 64, 371, 366, 334, 253, 125, 812, 806, 766, 658, 466, 216, 1596, 1589, 1541, 1406, 1150, 775, 343, 2892, 2884, 2828, 2666, 2346, 1846, 1198, 512, 4917, 4908, 4844, 4655, 4271, 3646, 2782, 1753, 729, 7942
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2012

Keywords

Comments

Principal diagonal: A213554
Antidiagonal sums: A101089
row 1, (1,2,3,...)**(1,8,27,...): A024166
row 2, (1,2,3,...)**(8,27,64,...): (3*k^5 + 30*k^4 + 115*k^3 + 210*k^2 + 122*k)/60
row 3, (1,2,3,...)**(27,64,125,...): (3*k^5 + 45*k^4 + 265*k^3 + 765*k^2 + 542*k)/120
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1.....10....46.....146....371
8.....43....142....366....806
27....118...334....766....1541
64....253...658....1406...2666
125...466...1150...2346...4271
		

Crossrefs

Cf. A213500.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k +n*(3*n^2 +6*n +1))/30 ))); # G. C. Greubel, Jul 31 2019
  • Magma
    [Binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k + n*(3*n^2 +6*n +1))/30: k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 31 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= n; c[n_]:= n^3;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_]:= Table[T[n, k], {k, 1, 60}]  (* A213553 *)
    d = Table[T[n, n], {n, 1, 40}] (* A213554 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A101089 *)
    (* Second program *)
    Table[Binomial[n-k+2, 2]*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k +n*(3*n^2 +6*n +1))/30, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 31 2019 *)
  • PARI
    t(n,k) = binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k +n*(3*n^2 +6*n +1))/30;
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 31 2019
    
  • Sage
    [[binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k + n*(3*n^2 +6*n +1))/30 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 31 2019
    

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) -T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n^3 + (-3*n^3 + 3*n^2 + 3*n + 1)*x + (3*n^3 - 6*n^2 + 4)*x^2 - ((n-1)^3)*x^3 and g(x) = (1 - x)^6.
T(n,k) = k*((3*k^4 - 5*k^2 + 2) + 15*k*(k^2 - 1)*n + 30*(k^2 - 1)*n^2 + 30*(k + 1)*n^3)/60. - G. C. Greubel, Jul 31 2019