cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213558 Rectangular array: (row n) = b**c, where b(h) = h^3, c(h) = (n-1+h)^3, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 16, 8, 118, 91, 27, 560, 496, 280, 64, 2003, 1878, 1366, 637, 125, 5888, 5672, 4672, 2944, 1216, 216, 14988, 14645, 12917, 9542, 5446, 2071, 343, 34176, 33664, 30920, 25088, 17088, 9088, 3256, 512, 71445, 70716, 66620, 57359, 43535
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2012

Keywords

Comments

Principal diagonal: A213559
Antidiagonal sums: A213560
Row 1, (1,8,27,...)**(1,8,27,...): A145216
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1.....16.....118....560.....2003
8.....91.....496....1878....5672
27....280....1366...4672....12917
64....637....2944...9542....25088
125...1216...5446...17088...43535
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n^3; c[n_] := n^3
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213558 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213559 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213560 *)

Formula

T(n,k) = 8*T(n,k-1) - 28*T(n,k-2) + 56*T(n,k-3) - 70*T(n,k-4) + 56*T(n,k-5) - 28*T(n,k-6) + 8*T(n,k-7) - T(n,k-8).
G.f. for row n: f(x)/g(x), where f(x) = n^3 + ((n + 1)^3)*x + (-8*n^3 + 6*n^2 + 12*n + 8)*x^2 + (8*n^3 - 18*n^2 + 18)*x^3 - ((n - 2)^3)*x^4 - ((n + 1)^3)*x^5 and g(x) = (1 - x)^8.