A213559
Principal diagonal of the convolution array A213558.
Original entry on oeis.org
1, 91, 1366, 9542, 43535, 151313, 435324, 1089804, 2452269, 5071495, 9794290, 17873362, 31098587, 51953981, 83802680, 131102232, 199652505, 296878515, 432150478, 617143390, 866238439, 1196968553, 1630510388, 2192225060
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
(See A213558.)
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,91,1366,9542,43535,151313,435324,1089804},40] (* Harvey P. Dale, Oct 09 2016 *)
A213560
Antidiagonal sums of the convolution array A213558.
Original entry on oeis.org
1, 24, 236, 1400, 6009, 20608, 59952, 153792, 357225, 765688, 1535820, 2913560, 5270993, 9153600, 15339712, 24914112, 39357873, 60656664, 91429900, 135083256, 195987209, 279684416, 393128880, 544960000, 745814745, 1008681336, 1349297964, 1786600216, 2343221025
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Henri Muehle, Proper Mergings of Stars and Chains are Counted by Sums of Antidiagonals in Certain Convolution Arrays -- The Details, arXiv preprint arXiv:1301.1654 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Showing 1-3 of 3 results.
Comments