cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213561 Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = m*(m+1)/2, m=n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 7, 3, 27, 18, 6, 77, 61, 34, 10, 182, 157, 109, 55, 15, 378, 342, 267, 171, 81, 21, 714, 665, 557, 407, 247, 112, 28, 1254, 1190, 1043, 827, 577, 337, 148, 36, 2079, 1998, 1806, 1512, 1152, 777, 441, 189, 45, 3289, 3189, 2946, 2562, 2072, 1532
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213562
Antidiagonal sums: A213563
Row 1, (1,4,9,...)**(1,3,6,...): A005585
Row 2, (1,4,9,...)**(3,6,10,...): (2*k^5 +25*k^4 + 120*k^3 + 155*k^2 + 58*k)/120
Row 3, (1,4,9,...)**(6,10,15,...): (2*k^5 +35*k^4 + 60*k^3 + 325*k^2 + 118*k)/120
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....7.....27....77....182
3....18....61....157...342
6....34....109...267...557
10...55....171...407...827
15...81....247...577...1152
21...112...337...777...1532
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n^2; c[n_] := n (n + 1)/2
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213561 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213562 *)
    s1 = Table[s[n], {n, 1, 50}] (* A213563 *)

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n*(n + 1) - (n^2 - n - 2)*x - (n^2 + n - 2)*x^2 + n*(n - 1)*x^3 and g(x) = 2*(1 - x)^6.