A213562
Principal diagonal of the convolution array A213561.
Original entry on oeis.org
1, 18, 109, 407, 1152, 2723, 5670, 10746, 18939, 31504, 49995, 76297, 112658, 161721, 226556, 310692, 418149, 553470, 721753, 928683, 1180564, 1484351, 1847682, 2278910, 2787135, 3382236, 4074903, 4876669, 5799942, 6858037
Offset: 1
-
(See A213561.)
LinearRecurrence[{6,-15,20,-15,6,-1},{1,18,109,407,1152,2723},30] (* Harvey P. Dale, Nov 12 2014 *)
A213563
Antidiagonal sums of the convolution array A213561.
Original entry on oeis.org
1, 10, 51, 182, 518, 1260, 2730, 5412, 9999, 17446, 29029, 46410, 71708, 107576, 157284, 224808, 314925, 433314, 586663, 782782, 1030722, 1340900, 1725230, 2197260, 2772315, 3467646, 4302585, 5298706, 6479992, 7873008, 9507080
Offset: 1
-
(See A213561.)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,10,51,182,518,1260,2730},40] (* Harvey P. Dale, Aug 10 2024 *)
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Showing 1-3 of 3 results.
Comments