A213564 Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
1, 7, 4, 27, 21, 9, 77, 67, 43, 16, 182, 167, 127, 73, 25, 378, 357, 297, 207, 111, 36, 714, 686, 602, 467, 307, 157, 49, 1254, 1218, 1106, 917, 677, 427, 211, 64, 2079, 2034, 1890, 1638, 1302, 927, 567, 273, 81, 3289, 3234, 3054, 2730, 2282, 1757
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....7.....27....77....182 4....21....67....167...357 9....43....127...297...602 16...73....207...467...917 25...111...307...677...1302 36...157...427...927...1757
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Crossrefs
Cf. A213500.
Programs
-
Mathematica
b[n_] := n (n + 1)/2; c[n_] := n^2 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] r[n_] := Table[t[n, k], {k, 1, 60}] (* A213564 *) d = Table[t[n, n], {n, 1, 40}] (* A213565 *) s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A101094 *)
Formula
T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n^2 - (2*n^2 - 2n - 1)*x + ((n - 1)^2)*x^2 and g(x) = (1 - x)^6.
Comments