cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213564 Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 7, 4, 27, 21, 9, 77, 67, 43, 16, 182, 167, 127, 73, 25, 378, 357, 297, 207, 111, 36, 714, 686, 602, 467, 307, 157, 49, 1254, 1218, 1106, 917, 677, 427, 211, 64, 2079, 2034, 1890, 1638, 1302, 927, 567, 273, 81, 3289, 3234, 3054, 2730, 2282, 1757
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213565
Antidiagonal sums: A101094
Row 1, (1,3,6,...)**(1,4,9,...): A005585
Row 2, (1,3,6,...)**(4,9,16,...): (k^5 +25*k^4 + 60*k^3 + 215*k^2 + 59*k)/60
Row 3, (1,3,6,...)**(9,16,25,...): (k^5 +35*k^4 + 30*k^3 + 505*k^2 + 149*k)/60
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....7.....27....77....182
4....21....67....167...357
9....43....127...297...602
16...73....207...467...917
25...111...307...677...1302
36...157...427...927...1757
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n (n + 1)/2; c[n_] := n^2
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213564 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213565 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A101094 *)

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n^2 - (2*n^2 - 2n - 1)*x + ((n - 1)^2)*x^2 and g(x) = (1 - x)^6.