A213565
Principal diagonal of the convolution array A213564.
Original entry on oeis.org
1, 21, 127, 467, 1302, 3038, 6258, 11754, 20559, 33979, 53625, 81445, 119756, 171276, 239156, 327012, 438957, 579633, 754243, 968583, 1229074, 1542794, 1917510, 2361710, 2884635, 3496311, 4207581, 5030137, 5976552, 7060312
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A101094
a(n) = n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120.
Original entry on oeis.org
1, 11, 57, 203, 574, 1386, 2982, 5874, 10791, 18733, 31031, 49413, 76076, 113764, 165852, 236436, 330429, 453663, 612997, 816431, 1073226, 1394030, 1791010, 2277990, 2870595, 3586401, 4445091, 5468617, 6681368, 8110344, 9785336
Offset: 1
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120 : n in [1..35]]; // Vincenzo Librandi, Apr 23 2015
-
Table[n*(n + 1)*(n + 2)*(n + 3)*(1 + 3*n + n^2)/120, {n, 31}] (* Michael De Vlieger, Apr 20 2015 *)
-
[n*(n+1)*(n+2)*(n+3)*(1+3*n+n^2)/120 for n in range(1,32)] # Danny Rorabaugh, Apr 20 2015
A213575
Antidiagonal sums of the convolution array A213573.
Original entry on oeis.org
1, 10, 47, 158, 441, 1098, 2539, 5590, 11909, 24818, 50967, 103662, 209521, 421786, 846947, 1697990, 3400893, 6807618, 13622095, 27252190, 54513641, 109037930, 218088027, 436189878, 872395381, 1744808338, 3489636359
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..500
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
-
List([1..30], n-> 13*2^(n+1)-(n^3+6*n^2+18*n+26)); # G. C. Greubel, Jul 25 2019
-
[13*2^(n+1)-(n^3+6*n^2+18*n+26): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n^2;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213573 *)
d = Table[t[n, n], {n, 1, 40}] (* A213574 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213575 *)
(* Additional programs *)
Table[Sum[k^3*2^(n-k),{k,0,n}],{n,1,30}] (* Vaclav Kotesovec, Nov 28 2013 *)
-
vector(30, n, 13*2^(n+1)-(n^3+6*n^2+18*n+26)) \\ G. C. Greubel, Jul 25 2019
-
[13*2^(n+1)-(n^3+6*n^2+18*n+26) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Showing 1-4 of 4 results.
Comments