A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A232603
a(n) = 2^n * Sum_{k=0..n} k^p*q^k, where p=2, q=-1/2.
Original entry on oeis.org
0, -1, 2, -5, 6, -13, 10, -29, 6, -69, -38, -197, -250, -669, -1142, -2509, -4762, -9813, -19302, -38965, -77530, -155501, -310518, -621565, -1242554, -2485733, -4970790, -9942309, -19883834, -39768509, -79536118
Offset: 0
a(3) = 2^3 * [0^2/2^0 - 1^2/2^1 + 2^2/2^2 - 3^2/2^3] = -5.
Cf.
A001045 (p=0,q=-1/2),
A053088 (p=1,q=-1/2),
A232604 (p=3,q=-1/2),
A000225 (p=0,q=1/2),
A000295 and
A125128 (p=1,q=1/2),
A047520 (p=2,q=1/2),
A213575 (p=3,q=1/2),
A232599 (p=3,q=-1),
A232600 (p=1,q=-2),
A232601 (p=2,q=-2),
A232602 (p=3,q=-2).
-
[((-1)^n*(2+12*n+9*n^2) -2^(n+1))/27: n in [0..30]]; // G. C. Greubel, Mar 31 2021
-
A232603:= n-> ((-1)^n*(2+12*n+9*n^2) -2^(n+1))/27; seq(A232603(n), n=0..35); # G. C. Greubel, Mar 31 2021
-
LinearRecurrence[{-1,3,5,2}, {0,-1,2,-5}, 35] (* G. C. Greubel, Mar 31 2021 *)
-
a(n)=((-1)^n*(9*n^2+12*n+2)-2^(n+1))/27;
-
[((-1)^n*(2+12*n+9*n^2) -2^(n+1))/27 for n in (0..30)] # G. C. Greubel, Mar 31 2021
A232604
a(n) = 2^n * Sum_{k=0..n} k^p*q^k, where p=3, q=-1/2.
Original entry on oeis.org
0, -1, 6, -15, 34, -57, 102, -139, 234, -261, 478, -375, 978, -241, 2262, 1149, 6394, 7875, 21582, 36305, 80610, 151959, 314566, 616965, 1247754, 2479883, 4977342, 9935001, 19891954, 39759519, 79546038, 159062285
Offset: 0
a(3) = 2^3 * (0^3/2^0 - 1^3/2^1 + 2^3/2^2 - 3^3/2^3) = 0-4+16-27 = -15.
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
- Index entries for linear recurrences with constant coefficients, signature (-2,2,8,7,2).
Cf.
A001045 (p=0,q=-1/2),
A053088 (p=1,q=-1/2),
A232603 (p=2,q=-1/2),
A000225 (p=0,q=1/2),
A000295 and
A125128 (p=1,q=1/2),
A047520 (p=2,q=1/2),
A213575 (p=3,q=1/2),
A232599 (p=3,q=-1),
A232600 (p=1,q=-2),
A232601 (p=2,q=-2),
A232602 (p=3,q=-2).
-
[(2^(n+1) + (-1)^n*(9*n^3 +18*n^2 +6*n -2))/27: n in [0..35]]; // G. C. Greubel, Mar 31 2021
-
A232604:= n-> (2^(n+1) +(-1)^n*(9*n^3 +18*n^2 +6*n -2))/27; seq(A232604(n), n=0..30); # G. C. Greubel, Mar 31 2021
-
LinearRecurrence[{-2,2,8,7,2}, {0,-1,6,-15,34}, 35] (* G. C. Greubel, Mar 31 2021 *)
-
a(n)=(2^(n+1)+(-1)^n*(9*n^3+18*n^2+6*n-2))/27;
-
[(2^(n+1) + (-1)^n*(9*n^3 +18*n^2 +6*n -2))/27 for n in (0..35)] # G. C. Greubel, Mar 31 2021
A213573
Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 6, 4, 21, 17, 9, 58, 50, 34, 16, 141, 125, 93, 57, 25, 318, 286, 222, 150, 86, 36, 685, 621, 493, 349, 221, 121, 49, 1434, 1306, 1050, 762, 506, 306, 162, 64, 2949, 2693, 2181, 1605, 1093, 693, 405, 209, 81, 5998, 5486, 4462, 3310, 2286, 1486
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1, 6, 21, 58, 141, 318, ...
4, 17, 50, 125, 286, 621, ...
9, 34, 93, 222, 493, 1050, ...
16, 57, 150, 349, 762, 1605, ...
25, 86, 221, 506, 1093, 2286, ...
36, 121, 306, 693, 1486, 3093, ...
...
-
Flat(List([1..12], n-> List([1..n], k-> 2^(n-k+1)*((k+1)^2 +2)- ((n+2)^2 +2) ))); # G. C. Greubel, Jul 25 2019
-
[2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= 2^(n-1); c[n_]:= n^2;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[T[n, k], {k, 60}] (* A213573 *)
d = Table[T[n, n], {n, 40}] (* A213574 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213575 *)
(* Additional programs *)
Table[2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2), {n,12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *)
-
for(n=1,12, for(k=1,n, print1(2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2), ", "))) \\ G. C. Greubel, Jul 25 2019
-
[[2^(n-k+1)*((k+1)^2 +2)-((n+2)^2 +2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019
A368530
a(n) = Sum_{k=1..n} k^3 * 4^(n-k).
Original entry on oeis.org
0, 1, 12, 75, 364, 1581, 6540, 26503, 106524, 426825, 1708300, 6834531, 27339852, 109361605, 437449164, 1749800031, 6999204220, 27996821793, 111987293004, 447949178875, 1791796723500, 7167186903261, 28668747623692, 114674990506935, 458699962041564
Offset: 0
Showing 1-5 of 5 results.
Comments