A213572 Principal diagonal of the convolution array A213571.
1, 13, 82, 406, 1809, 7659, 31588, 128476, 518611, 2084809, 8361918, 33497010, 134094757, 536608663, 2146926472, 8588754808, 34357247847, 137433710421, 549744803650, 2199000186670, 8796044787481, 35184271425283
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-47,101,-116,68,-16).
Programs
-
GAP
List([1..30], n-> 2^(2*n+1) -2^n*(n+2) -Binomial(n+1, 2)); # G. C. Greubel, Jul 25 2019
-
Magma
[2^(2*n+1) -2^n*(n+2) -Binomial(n+1, 2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
Mathematica
(* First program *) b[n_]:= n; c[n_]:= -1 + 2^n; t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *) d = Table[t[n, n], {n, 1, 40}] (* A213572 *) s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213581 *) (* Additional programs *) Table[2^(2*n+1) -2^n*(n+2)-Binomial[n+1, 2], {n,30}] (* G. C. Greubel, Jul 25 2019 *)
-
PARI
vector(30, n, 2^(2*n+1) -2^n*(n+2) -binomial(n+1, 2)) \\ G. C. Greubel, Jul 25 2019
-
Sage
[2^(2*n+1) -2^n*(n+2) -binomial(n+1, 2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Formula
a(n) = (2^(n+2)*(2^n-1) - (2^(n+1) + n + 1)*n)/2.
a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6).
G.f.: f(x)/g(x), where f(x) = x*(1 + 2*x - 14*x^2 + 14*x^3) and g(x) = (1 - 4*x)*((1 - x)^3)*(1 - 2*x)^2.