A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213571
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 5, 3, 16, 13, 7, 42, 38, 29, 15, 99, 94, 82, 61, 31, 219, 213, 198, 170, 125, 63, 466, 459, 441, 406, 346, 253, 127, 968, 960, 939, 897, 822, 698, 509, 255, 1981, 1972, 1948, 1899, 1809, 1654, 1402, 1021, 511, 4017, 4007, 3980, 3924, 3819, 3633
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1, 5, 16, 42, 99, 219, ...
3, 13, 38, 94, 213, 459, ...
7, 29, 82, 198, 441, 939, ...
15, 61, 170, 406, 897, 1899, ...
31, 125, 346, 822, 1809, 3819, ...
...
-
Flat(List([1..12], n-> List([1..n], k-> 2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2) ))); # G. C. Greubel, Jul 25 2019
-
[2^(n+2) -2^k*(n-k+3) -Binomial(n-k+2, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= n; c[n_]:= -1 + 2^n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *)
d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
(* Additional programs *)
Table[2^(n+2) -2^k*(n-k+3) -Binomial[n-k+2, 2], {n,12}, {k, n}]//Flatten (* G. C. Greubel, Jul 25 2019 *)
-
for(n=1,12, for(k=1,n, print1(2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2), ", "))) \\ G. C. Greubel, Jul 25 2019
-
[[2^(n+2) -2^k*(n-k+3) -binomial(n-k+2, 2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 25 2019
A213572
Principal diagonal of the convolution array A213571.
Original entry on oeis.org
1, 13, 82, 406, 1809, 7659, 31588, 128476, 518611, 2084809, 8361918, 33497010, 134094757, 536608663, 2146926472, 8588754808, 34357247847, 137433710421, 549744803650, 2199000186670, 8796044787481, 35184271425283
Offset: 1
-
List([1..30], n-> 2^(2*n+1) -2^n*(n+2) -Binomial(n+1, 2)); # G. C. Greubel, Jul 25 2019
-
[2^(2*n+1) -2^n*(n+2) -Binomial(n+1, 2): n in [1..30]]; // G. C. Greubel, Jul 25 2019
-
(* First program *)
b[n_]:= n; c[n_]:= -1 + 2^n;
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *)
d = Table[t[n, n], {n, 1, 40}] (* A213572 *)
s[n_]:= Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213581 *)
(* Additional programs *)
Table[2^(2*n+1) -2^n*(n+2)-Binomial[n+1, 2], {n,30}] (* G. C. Greubel, Jul 25 2019 *)
-
vector(30, n, 2^(2*n+1) -2^n*(n+2) -binomial(n+1, 2)) \\ G. C. Greubel, Jul 25 2019
-
[2^(2*n+1) -2^n*(n+2) -binomial(n+1, 2) for n in (1..30)] # G. C. Greubel, Jul 25 2019
Showing 1-3 of 3 results.
Comments