cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213585 Principal diagonal of the convolution array A213584.

Original entry on oeis.org

1, 7, 22, 54, 116, 232, 443, 821, 1490, 2664, 4710, 8256, 14373, 24883, 42878, 73594, 125880, 214664, 365087, 619425, 1048666, 1771852, 2988362, 5031744, 8459401, 14201887, 23811238, 39873726, 66695420, 111440104, 186016835
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..40], n-> F(n+4) +n*F(n+3) -(4*n+3)) # G. C. Greubel, Jul 08 2019
  • Magma
    F:=Fibonacci; [F(n+4) +n*F(n+3) -(4*n+3): n in [1..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n+1]; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    d = Table[T[n, n], {n, 1, 40}] (* A213585 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213586 *)
    (* Second program *)
    Table[Fibonacci[n+4] + n*Fibonacci[n+3] -4*n-3, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    vector(40, n, f=fibonacci; f(n+4) +n*f(n+3) -(4*n+3)) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    f=fibonacci; [f(n+4) +n*f(n+3) -(4*n+3) for n in (1..40)] # G. C. Greubel, Jul 08 2019
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) + a(n-5).
G.f.: x*(1 + 3*x - 2*x^2 - 4*x^3 - 2*x^4)/(1 - 2*x + x^3)^2.
a(n) = Fibonacci(n+4) + n*Fibonacci(n+3) - (4*n + 3). - G. C. Greubel, Jul 08 2019