A213585 Principal diagonal of the convolution array A213584.
1, 7, 22, 54, 116, 232, 443, 821, 1490, 2664, 4710, 8256, 14373, 24883, 42878, 73594, 125880, 214664, 365087, 619425, 1048666, 1771852, 2988362, 5031744, 8459401, 14201887, 23811238, 39873726, 66695420, 111440104, 186016835
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,4,0,-1).
Programs
-
GAP
F:=Fibonacci;; List([1..40], n-> F(n+4) +n*F(n+3) -(4*n+3)) # G. C. Greubel, Jul 08 2019
-
Magma
F:=Fibonacci; [F(n+4) +n*F(n+3) -(4*n+3): n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
Mathematica
(* First program *) b[n_]:= Fibonacci[n+1]; c[n_]:= n; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *) r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *) d = Table[T[n, n], {n, 1, 40}] (* A213585 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A213586 *) (* Second program *) Table[Fibonacci[n+4] + n*Fibonacci[n+3] -4*n-3, {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
-
PARI
vector(40, n, f=fibonacci; f(n+4) +n*f(n+3) -(4*n+3)) \\ G. C. Greubel, Jul 08 2019
-
Sage
f=fibonacci; [f(n+4) +n*f(n+3) -(4*n+3) for n in (1..40)] # G. C. Greubel, Jul 08 2019
Formula
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) + a(n-5).
G.f.: x*(1 + 3*x - 2*x^2 - 4*x^3 - 2*x^4)/(1 - 2*x + x^3)^2.
a(n) = Fibonacci(n+4) + n*Fibonacci(n+3) - (4*n + 3). - G. C. Greubel, Jul 08 2019