cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213616 Triangle read by rows, coefficients of the Bernoulli nabla polynomials BN_{n}(x) times A144845(n) in descending order of powers.

Original entry on oeis.org

1, 2, -3, 6, -18, 13, 2, -9, 13, -6, 30, -180, 390, -360, 119, 6, -45, 130, -180, 119, -30, 42, -378, 1365, -2520, 2499, -1260, 253, 6, -63, 273, -630, 833, -630, 253, -42, 30, -360, 1820, -5040, 8330, -8400, 5060, -1680, 239, 10, -135, 780, -2520, 4998, -6300
Offset: 0

Views

Author

Peter Luschny, Jun 16 2012

Keywords

Comments

The polynomials BN_{n}(x) have the e.g.f. t*exp(t*(x-1))/(exp(t)-1). The adjunct 'nabla' in the name refers to the backward difference operation.
BN_{n}(1) are the Bernoulli numbers.
In the difference table of the Bernoulli polynomials the polynomials BN_{n}(x) appear as the top row (see the link).

Examples

			bn(0,x) =  1,
bn(1,x) =  2*x   -   3,
bn(2,x) =  6*x^2 -  18*x   +  13,
bn(3,x) =  2*x^3 -   9*x^2 +  13*x   -   6,
bn(4,x) = 30*x^4 - 180*x^3 + 390*x^2 - 360*x   + 119,
bn(5,x) =  6*x^5 -  45*x^4 + 130*x^3 - 180*x^2 + 119*x - 30.
		

Crossrefs

Programs

  • Maple
    seq(seq(coeff(denom(bernoulli(i, x))*bernoulli(i, x - 1), x, i - j), j=0..i), i=0..12);
  • Mathematica
    Table[If[i == 0, 1, 1/First[ FactorTerms[ BernoulliB[i, x]]]]*Table[ Coefficient[ Denominator[ BernoulliB[i, x]]*BernoulliB[i, x-1], x, i-j], {j, 0, i}], {i, 0, 12}] // Flatten (* Jean-François Alcover, Sep 27 2013, after Maple *)

Formula

T(n,k) = A144845(n)*[x^(n-k)]BN{n}(x).

A218853 Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in increasing powers.

Original entry on oeis.org

1, -1, 2, 1, -6, 6, 0, 1, -3, 2, -1, 0, 30, -60, 30, 0, -1, 0, 10, -15, 6, 1, 0, -21, 0, 105, -126, 42, 0, 1, 0, -7, 0, 21, -21, 6, -1, 0, 20, 0, -70, 0, 140, -120, 30, 0, -3, 0, 20, 0, -42, 0, 60, -45, 10, 5, 0, -99, 0, 330, 0, -462, 0, 495, -330, 66, 0, 5, 0
Offset: 0

Views

Author

T. D. Noe, Nov 07 2012

Keywords

Comments

See A213615 for the polynomials in decreasing powers.

Crossrefs

Cf. A213615.

Programs

  • Maple
    A218853_row := n -> seq(coeff(numer(bernoulli(n,x)),x,j),j=0..n):
    seq(A218853_row(n), n = 0..10); # Peter Luschny, Nov 22 2015
  • Mathematica
    Flatten[Table[ p = CoefficientList[BernoulliB[n, x], x]; (LCM @@ Denominator[p])*p, {n, 0, 10}]]
Showing 1-2 of 2 results.