A213617 Expansion of psi(x) * f(-x^3)^3 in powers of x where psi() and f() are Ramanujan theta functions.
1, 2, 3, 3, 3, 5, 4, 5, 4, 5, 7, 5, 8, 4, 5, 8, 8, 9, 5, 7, 9, 6, 9, 9, 7, 10, 10, 11, 5, 6, 12, 12, 10, 10, 7, 10, 12, 14, 10, 5, 15, 8, 13, 8, 12, 17, 10, 16, 7, 9, 14, 12, 15, 11, 11, 12, 12, 16, 14, 15, 13, 15, 13, 7, 12, 17, 16, 15, 10, 13, 18, 16, 20
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 3*x^4 + 5*x^5 + 4*x^6 + 5*x^7 + 4*x^8 + 5*x^9 + ... G.f. = q^11 + 2*q^35 + 3*q^59 + 3*q^83 + 3*q^107 + 5*q^131 + 4*q^155 + 5*q^179 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A213618.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^2 QPochhammer[ x^3]^3 / QPochhammer[x]^2, {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / eta(x + A)^2, n))};
Formula
Expansion of q^(-11/24) * eta(q^2)^2 * eta(q^3)^3 / eta(q)^2 in powers of q.
Euler transform of period 6 sequence [ 2, 0, -1, 0, 2, -3, ...].
6 * a(n) = A213618(24*n + 11).
Comments