A213624 Expansion of psi(x)^2 * psi(x^4) in powers of x where psi() is a Ramanujan theta function.
1, 2, 1, 2, 3, 2, 4, 4, 2, 2, 5, 4, 2, 6, 3, 6, 7, 2, 5, 4, 5, 6, 6, 2, 5, 10, 3, 6, 10, 4, 6, 8, 3, 8, 7, 6, 7, 6, 4, 6, 11, 6, 9, 10, 3, 6, 14, 4, 8, 10, 8, 10, 5, 6, 4, 16, 7, 4, 10, 4, 13, 14, 7, 8, 8, 6, 10, 12, 7, 12, 15, 8, 8, 10, 4, 6, 17, 6, 10, 10
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 2*x^8 + 2*x^9 + ... G.f. = q^3 + 2*q^7 + q^11 + 2*q^15 + 3*q^19 + 2*q^23 + 4*q^27 + 4*q^31 + 2*q^35 + ...
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 23.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, q]^2 EllipticTheta[ 2, 0, q^4], {q, 0, 2 n + 3/2}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))};
Formula
Expansion of q^(-3/4) * eta(q^2)^4 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [2, -2, 2, -1, 2, -2, 2, -3, ...].
Comments