A213652 9-nomial coefficient array: Coefficients of the polynomial (1+...+X^8)^n, n=0,1,...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 52, 57, 60, 61, 60, 57, 52, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 216, 270, 324, 375, 420, 456, 480, 489, 480, 456
Offset: 0
Examples
The triangle starts: (row n=0) 1; (row sum = 1, row length = 1) (row n=1) 1,1,1,1,1,1,1,1,1; (row sum = 9, row length = 9) (row n=2) 1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1; (sum = 81, length = 17) (row n=3) 1,3,6,10,15,21,28,36,45,52,57,60,61,60,... (sum = 729, length = 25) (row n=4) 1, 4, 10, 20, 35, 56, 84, 120, 165, 216, 270, 324, 375, 420, 456,... (sum = 9^4; length = 33), etc.
Links
- Seiichi Manyama, Rows n = 0..49, flattened
Crossrefs
Programs
-
Maple
#Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)): #Display the 9-nomials as a table r := 9: rows := 10: for n from 0 to rows do seq(rnomial(r,n,k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013
-
PARI
concat(vector(5,k,Vec(sum(j=0,8,x^j)^(k-1))))
Formula
T(n,k) = Sum_{i=0..floor(k/9)} (-1)^i*binomial(n,i)*binomial(n+k-1-9*i,n-1) for n >= 0 and 0 <= k <= 8*n. - Peter Bala, Sep 07 2013
Comments