cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213661 Number of dominating subsets of the wheel graph W_n.

Original entry on oeis.org

4, 3, 7, 15, 27, 53, 103, 199, 387, 753, 1467, 2863, 5595, 10949, 21455, 42095, 82691, 162625, 320179, 631031, 1244907, 2458261, 4858487, 9610231, 19024131, 37687153, 74710123, 148198623, 294150331, 584167941, 1160734623, 2307488351, 4589261827
Offset: 1

Views

Author

Emeric Deutsch, Jun 29 2012

Keywords

Comments

a(n) = Sum_{k=1..n} A212635(n,k).
Extended to a(1)-a(3) using the formula/recurrence.

Examples

			a(4)=15 because all nonempty subsets of the wheel W_4 are dominating (2^4 - 1 = 15).
		

Crossrefs

Cf. A212635.

Programs

  • Maple
    a[4] := 15: a[5] := 27: a[6] := 53: for n from 7 to 42 do a[n] := a[n-1]+a[n-2]+a[n-3]+2^(n-4) end do: seq(a[n], n = 4 .. 40);
  • Mathematica
    LinearRecurrence[{3, -1, -1, -2}, {4, 3, 7, 15}, 40] (* Eric W. Weisstein, Mar 31 2017 *)
    Table[2^(n - 1) + RootSum[-1 - # - #^2 + #^3 &, #^n (-1 - # + #1^2) &], {n, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
    CoefficientList[Series[(4 - 9 x + 2 x^2 + x^3)/(1 - 3 x + x^2 + x^3 + 2 x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 17 2018 *)

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + 2^(n-4) for n >= 4.
G.f.: x*(4 - 9*x + 2*x^2 + x^3)/(1 - 3*x + x^2 + x^3 + 2*x^4).
a(n) = 2^(n-1) -A000073(n+2)+4*A000073(n+1) -A000073(n). - R. J. Mathar, Jun 29 2012
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - 2*a(n-4). - Eric W. Weisstein, Apr 17 2018

Extensions

a(1)-a(3) prepended by Eric W. Weisstein, Apr 17 2018