A213679 Total sum of parts <= n of multiplicity 0 in all partitions of n.
0, 0, 3, 11, 36, 79, 186, 345, 672, 1163, 2026, 3273, 5388, 8301, 12912, 19349, 28961, 42071, 61253, 86921, 123404, 171972, 239020, 327386, 447743, 604255, 813645, 1084657, 1441643, 1899450, 2496510, 3255653, 4234822, 5472953, 7053217, 9038784, 11554020
Offset: 0
Keywords
Examples
The partitions of n=4 are [1,1,1,1], [2,1,1], [2,2], [3,1], [4]. Parts <= 4 with multiplicity m=0 sum up to (2+3+4)+(3+4)+(1+3+4)+(2+4)+(1+2+3) = 36, thus a(4) = 36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, p) option remember; `if`(n=0 and p=0, [1, 0], `if`(p<1, [0$2], add((l->`if`(m=0, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p))) end: a:= n-> b(n, n)[2]: seq(a(n), n=0..55);
-
Mathematica
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)