A213726 a(n)=0 if n is in the infinite trunk of the "beanstalk" (i.e., in A179016), otherwise number of terminal nodes (leaves) in that finite branch of the beanstalk.
0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 0, 1, 2, 0, 1, 1, 3, 0, 1, 2, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 1, 1, 3, 0, 1, 2, 0, 1, 1, 1, 0, 4, 1, 0, 3, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 1, 1, 3, 0, 1, 2, 0, 1, 1, 1, 0, 4, 1, 0, 3, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 0, 4, 1, 0, 3, 1, 1, 0, 2, 1, 0, 3, 1, 1, 1, 0, 2, 1, 0, 3, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 1, 1, 3, 0, 1, 2, 0, 1, 1, 1, 0, 4, 1, 0, 3, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 0, 4, 1, 0, 3, 1, 1, 0, 2, 1, 0, 3, 1, 1, 1, 0, 2, 1, 0, 3, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 4, 1, 0, 3, 1, 1, 0, 2, 1, 0, 3, 1, 1, 1, 0, 2, 1, 6
Offset: 0
Examples
a(10)=2 because the only numbers in A055938 from which one can end to 10 by the process described in A071542/A179016 are 12 and 13 (see comment at A213717). Similarly, a(22)=3 as there are following three cases: 24 as 24-A000120(24) = 24-2 = 22, and also 28 & 29 as 28-A000120(28) = 28-3 = 25, and 29-A000120(29) = 29-4 = 25, and then 25-A000120(25) = 25-3 = 22.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Comments