A213748
Principal diagonal of the convolution array A213747.
Original entry on oeis.org
1, 16, 125, 758, 4071, 20424, 98185, 458506, 2096651, 9436172, 41941005, 184545294, 805298191, 3489644560, 15032352785, 64424443922, 274877775891, 1168230842388, 4947801800725, 20890719879190, 87960928124951
Offset: 1
-
(See A213747.)
LinearRecurrence[{12,-53,106,-96,32},{1,16,125,758,4071},30] (* Harvey P. Dale, Aug 15 2012 *)
A213749
Antidiagonal sums of the convolution array A213747.
Original entry on oeis.org
1, 9, 46, 180, 603, 1827, 5164, 13878, 35905, 90189, 221274, 532584, 1261687, 2949255, 6815896, 15597738, 35389629, 79691985, 178258150, 396361980, 876609811, 1929380139, 4227858756, 9227469150, 20065550713, 43486544277, 93952410034, 202400334288
Offset: 1
-
(See A213747.)
LinearRecurrence[{9,-33,63,-66,36,-8},{1,9,46,180,603,1827},30] (* Harvey P. Dale, May 16 2013 *)
-
Vec(x*(1 - 2*x^2) / ((1 - x)^3*(1 - 2*x)^3) + O(x^30)) \\ Colin Barker, Oct 30 2017
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Showing 1-3 of 3 results.
Comments