A213749 Antidiagonal sums of the convolution array A213747.
1, 9, 46, 180, 603, 1827, 5164, 13878, 35905, 90189, 221274, 532584, 1261687, 2949255, 6815896, 15597738, 35389629, 79691985, 178258150, 396361980, 876609811, 1929380139, 4227858756, 9227469150, 20065550713, 43486544277, 93952410034, 202400334288
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (9,-33,63,-66,36,-8).
Programs
-
Mathematica
(See A213747.) LinearRecurrence[{9,-33,63,-66,36,-8},{1,9,46,180,603,1827},30] (* Harvey P. Dale, May 16 2013 *)
-
PARI
Vec(x*(1 - 2*x^2) / ((1 - x)^3*(1 - 2*x)^3) + O(x^30)) \\ Colin Barker, Oct 30 2017
Formula
a(n) = 9*a(n-1) - 33*a(n-2) + 63*a(n-3) - 66*a(n-4) + 36*a(n-5) - 8*a(n-6).
G.f.: x*(1 - 2*x^2) / ((1 - x)^3*(1 - 2*x)^3).
a(n) = (1/2)*((1+n)*(4-2^(2+n) + n + 2^(1+n)*n)). - Colin Barker, Oct 30 2017