A213756 Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = 2*n - 3 + 2*h, n>=1, h>=1, and ** = convolution.
1, 6, 3, 21, 14, 5, 58, 43, 22, 7, 141, 110, 65, 30, 9, 318, 255, 162, 87, 38, 11, 685, 558, 369, 214, 109, 46, 13, 1434, 1179, 798, 483, 266, 131, 54, 15, 2949, 2438, 1673, 1038, 597, 318, 153, 62, 17, 5998, 4975, 3442, 2167, 1278, 711, 370, 175, 70
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....6....21....58....141...318 3....14...43....110...255...558 5....22...65....162...369...798 7....30...87....214...483...1038 9....38...109...266...597...1278 11...46...131...318...711...1518
Links
- Clark Kimberling, Antidiagonals n = 1..40, flattened
Crossrefs
Cf. A213500.
Programs
-
Mathematica
b[n_] := -1 + 2^n; c[n_] := 2 n - 1; t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] r[n_] := Table[t[n, k], {k, 1, 60}] (* A213756 *) Table[t[n, n], {n, 1, 40}] (* A213757 *) s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] Table[s[n], {n, 1, 50}] (* A213758 *)
Formula
T(n,k) = 5*T(n,k-1)-9*T(n,k-2)+7*T(n,k-3)-2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - 1 - (2*n - 3)*x) and g(x) = (1 - 2*x)(1 - x )^3.
Comments