A213760 Antidiagonal sums of the convolution array A213783.
1, 4, 12, 27, 52, 92, 148, 230, 335, 480, 656, 889, 1162, 1512, 1912, 2412, 2973, 3660, 4420, 5335, 6336, 7524, 8812, 10322, 11947, 13832, 15848, 18165, 20630, 23440, 26416, 29784, 33337, 37332, 41532, 46227, 51148, 56620, 62340, 68670
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
Mathematica
(See A213783.) LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{1,4,12,27,52,92,148,230},40] (* Harvey P. Dale, Feb 13 2024 *)
-
PARI
Vec(x*(1 + x - x^2)*(1 + x + 2*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^60)) \\ Colin Barker, May 04 2017
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) -2*a(n-7) +a(n-8).
G.f.: f(x)/g(x), where f(x) = x*(1 + 2*x + 2*x^2 + x^3 -2*x^4) and g(x) = (1 + x)^3 *(1 - x)^5.
From Colin Barker, May 04 2017: (Start)
a(n) = (2*n^4 + 22*n^3 + 40*n^2 + 8*n) / 96 for n even.
a(n) = (2*n^4 + 22*n^3 + 34*n^2 + 26*n + 12) / 96 for n odd.
(End)