cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213760 Antidiagonal sums of the convolution array A213783.

Original entry on oeis.org

1, 4, 12, 27, 52, 92, 148, 230, 335, 480, 656, 889, 1162, 1512, 1912, 2412, 2973, 3660, 4420, 5335, 6336, 7524, 8812, 10322, 11947, 13832, 15848, 18165, 20630, 23440, 26416, 29784, 33337, 37332, 41532, 46227, 51148, 56620, 62340, 68670
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    (See A213783.)
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{1,4,12,27,52,92,148,230},40] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    Vec(x*(1 + x - x^2)*(1 + x + 2*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^60)) \\ Colin Barker, May 04 2017

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) -2*a(n-7) +a(n-8).
G.f.: f(x)/g(x), where f(x) = x*(1 + 2*x + 2*x^2 + x^3 -2*x^4) and g(x) = (1 + x)^3 *(1 - x)^5.
From Colin Barker, May 04 2017: (Start)
a(n) = (2*n^4 + 22*n^3 + 40*n^2 + 8*n) / 96 for n even.
a(n) = (2*n^4 + 22*n^3 + 34*n^2 + 26*n + 12) / 96 for n odd.
(End)