A213761 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
1, 6, 4, 18, 15, 7, 40, 36, 24, 10, 75, 70, 54, 33, 13, 126, 120, 100, 72, 42, 16, 196, 189, 165, 130, 90, 51, 19, 288, 280, 252, 210, 160, 108, 60, 22, 405, 396, 364, 315, 255, 190, 126, 69, 25, 550, 540, 504, 448, 378, 300
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....6....18...40....75....126 4....15...36...70....120...189 7....24...54...100...165...252 10...33...72...130...210...315 13...42...90...160...255...378
Links
- Clark Kimberling, Antidiagonals n = 1..45, flattened
Crossrefs
Cf. A212500.
Programs
-
Mathematica
b[n_]:=n;c[n_]:=3n-2; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213761 *) Table[t[n,n],{n,1,40}] (* A172073 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A002419 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(3*n - 2 - (3*n - 5)*x) and g(x) = (1 - x)^4.
Comments