A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A002419
4-dimensional figurate numbers: a(n) = (6*n-2)*binomial(n+2,3)/4.
Original entry on oeis.org
1, 10, 40, 110, 245, 476, 840, 1380, 2145, 3190, 4576, 6370, 8645, 11480, 14960, 19176, 24225, 30210, 37240, 45430, 54901, 65780, 78200, 92300, 108225, 126126, 146160, 168490, 193285, 220720, 250976, 284240, 320705, 360570, 404040, 451326, 502645, 558220
Offset: 1
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index to sequences related to pyramidal numbers.
Cf.
A093563 ((6, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([1..40], n-> n*(n+1)*(n+2)*(3*n-1)/12); # G. C. Greubel, Jul 03 2019
-
/* A000027 convolved with A000567 (excluding 0): */ A000567:=func; [&+[(n-i+1)*A000567(i): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Dec 07 2012
-
CoefficientList[Series[(1+5*x)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 20 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 10, 40, 110, 245}, 40] (* Harvey P. Dale, Nov 30 2014 *)
Table[n(n+1)(n+2)(3n-1)/12, {n, 40}] (* Eric W. Weisstein, Jan 02 2018 *)
Table[Sum[2 x + 3 x^2 - 2 y, {x, 0, g}, {y, x, g}], {g, 1, 20}] (* Horst H. Manninger, Jun 20 2025 *)
-
a(n)=(3*n-1)*binomial(n+2,3)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
A002419_list, m = [], [6, 1, 1, 1, 1]
for _ in range(10**2):
A002419_list.append(m[-1])
for i in range(4):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
[n*(n+1)*(n+2)*(3*n-1)/12 for n in (1..40)] # G. C. Greubel, Jul 03 2019
A077414
a(n) = n*(n - 1)*(n + 2)/2.
Original entry on oeis.org
0, 4, 15, 36, 70, 120, 189, 280, 396, 540, 715, 924, 1170, 1456, 1785, 2160, 2584, 3060, 3591, 4180, 4830, 5544, 6325, 7176, 8100, 9100, 10179, 11340, 12586, 13920, 15345, 16864, 18480, 20196, 22015, 23940, 25974, 28120, 30381, 32760, 35260
Offset: 1
For n=6, a(6) = 1*(3*5+1)+2*(3*4+1)+3*(3*3+1)+4*(3*2+1)+5*(3*1+1) = 120. - _Bruno Berselli_, Feb 13 2014
G.f. = 4*x^2 + 15*x^3 + 36*x^4 + 70*x^5 + 120*x^6 + 189*x^7 + 280*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- DefElement, Raviart-Thomas
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Tanner Robeson, Sums of Square Tic Tac Toe Boards that end in a Draw.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index to sequences related to polygonal numbers.
Cf. similar sequences of the type m*(m+1)*(m+k)/2 listed in
A267370.
-
[n*(n-1)*(n+2)/2: n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
A077414:=n->n*(n-1)*(n+2)/2: seq(A077414(n), n=1..60); # Wesley Ivan Hurt, Apr 09 2017
-
Table[(n (n - 1) (n + 2))/2, {n, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 15, 36}, 50] (* Harvey P. Dale, Jun 04 2012 *)
CoefficientList[Series[x (4 - x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
-
a(n)=n*(n-1)*(n+2)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
concat(0, Vec(x^2*(4-x)/(1-x)^4 + O(x^200))) \\ Altug Alkan, Jan 15 2016
A172073
a(n) = (4*n^3 + n^2 - 3*n)/2.
Original entry on oeis.org
0, 1, 15, 54, 130, 255, 441, 700, 1044, 1485, 2035, 2706, 3510, 4459, 5565, 6840, 8296, 9945, 11799, 13870, 16170, 18711, 21505, 24564, 27900, 31525, 35451, 39690, 44254, 49155, 54405, 60016, 66000, 72369, 79135, 86310, 93906, 101935, 110409, 119340, 128740
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
Cf. similar sequences listed in
A237616.
-
List([0..40], n-> n*(n+1)*(4*n-3)/2); # G. C. Greubel, Aug 30 2019
-
[(4*n^3+n^2-3*n)/2: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
-
seq(n*(n+1)*(4*n-3)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
f[n_]:= n(n+1)(4n-3)/2; Array[f, 40, 0]
LinearRecurrence[{4,-6,4,-1},{0,1,15,54},40] (* Harvey P. Dale, Jan 29 2013 *)
CoefficientList[Series[x (1+11x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
-
a(n)=(4*n^3+n^2-3*n)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(n+1)*(4*n-3)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Showing 1-4 of 4 results.
Comments