A213770 Antidiagonal sums of the convolution array A213768.
1, 7, 23, 58, 126, 250, 467, 837, 1457, 2484, 4172, 6932, 11429, 18739, 30603, 49838, 81002, 131470, 213175, 345425, 559461, 905832, 1466328, 2373288, 3840841, 6215455, 10057727, 16274722, 26334102, 42610594, 68946587, 111559197
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
Magma
[2*Fibonacci(n+6)+Lucas(n+4)-n*(2*n+11)-23: n in [1..35]]; // Vincenzo Librandi, Jul 09 2019
-
Mathematica
(See A213768.)
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: f(x)/g(x), where f(x) = x*(1 + 3*x) and g(x) = (1 - x - x^2)(1 - x)^3.
a(n) = 2*Fibonacci(n+6) + Lucas(n+4) - n*(2*n + 11) - 23. - Ehren Metcalfe, Jul 08 2019