A213773 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
1, 8, 4, 30, 23, 7, 76, 66, 38, 10, 155, 142, 102, 53, 13, 276, 260, 208, 138, 68, 16, 448, 429, 365, 274, 174, 83, 19, 680, 658, 582, 470, 340, 210, 98, 22, 981, 956, 868, 735, 575, 406, 246, 113, 25, 1360, 1332, 1232, 1078
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....8....30....76....155...276 4....23...66....142...260...429 7....38...102...208...365...582 10...53...138...274...470...735 13...68...174...340...575...888
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1034
Crossrefs
Cf. A213500.
Programs
-
Mathematica
b[n_]:=3n-2;c[n_]:=3n-2; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213773 *) Table[t[n,n],{n,1,40}] (* A214092 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A213818 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x(3*n-2 + (3*n+1)*x - (6*n-10)*x^2) and g(x) = (1-x)^4.
Comments