cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213773 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 8, 4, 30, 23, 7, 76, 66, 38, 10, 155, 142, 102, 53, 13, 276, 260, 208, 138, 68, 16, 448, 429, 365, 274, 174, 83, 19, 680, 658, 582, 470, 340, 210, 98, 22, 981, 956, 868, 735, 575, 406, 246, 113, 25, 1360, 1332, 1232, 1078
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Principal diagonal: A213782
Antidiagonal sums: A214092
Row 1, (1,4,7,10,…)**(1,4,7,10,…): A100175
Row 2, (1,4,7,10,…)**(4,7,10,13,…): (3*k^3 + 6*k^2 - k)/2
Row 3, (1,4,7,10,…)**(7,10,13,16,…): (3*k^3 + 15*k^2 - 4*k)/2
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....8....30....76....155...276
4....23...66....142...260...429
7....38...102...208...365...582
10...53...138...274...470...735
13...68...174...340...575...888
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_]:=3n-2;c[n_]:=3n-2;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213773 *)
    Table[t[n,n],{n,1,40}] (* A214092 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    Table[s[n],{n,1,50}] (* A213818 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x(3*n-2 + (3*n+1)*x - (6*n-10)*x^2) and g(x) = (1-x)^4.