A213779 Principal diagonal of the convolution array A213778.
1, 6, 15, 33, 58, 97, 146, 214, 295, 400, 521, 671, 840, 1043, 1268, 1532, 1821, 2154, 2515, 2925, 3366, 3861, 4390, 4978, 5603, 6292, 7021, 7819, 8660, 9575, 10536, 11576, 12665, 13838, 15063, 16377, 17746, 19209, 20730, 22350, 24031, 25816, 27665, 29623
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
(See A213778.) LinearRecurrence[{2,1,-4,1,2,-1},{1,6,15,33,58,97},80] (* Harvey P. Dale, Dec 12 2016 *)
-
PARI
Vec(x*(1+4*x+2*x^2+x^3)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
Formula
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(1+4*x+2*x^2+x^3) / ((1-x)^4*(1+x)^2).
From Colin Barker, Jan 31 2016: (Start)
a(n) = (16*n^3+30*n^2+2*(3*(-1)^n+7)*n+3*((-1)^n-1))/48.
a(n) = (8*n^3+15*n^2+10*n)/24 for n even.
a(n) = (8*n^3+15*n^2+4*n-3)/24 for n odd.
(End)