cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213779 Principal diagonal of the convolution array A213778.

Original entry on oeis.org

1, 6, 15, 33, 58, 97, 146, 214, 295, 400, 521, 671, 840, 1043, 1268, 1532, 1821, 2154, 2515, 2925, 3366, 3861, 4390, 4978, 5603, 6292, 7021, 7819, 8660, 9575, 10536, 11576, 12665, 13838, 15063, 16377, 17746, 19209, 20730, 22350, 24031, 25816, 27665, 29623
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2012

Keywords

Crossrefs

Programs

  • Mathematica
    (See A213778.)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,6,15,33,58,97},80] (* Harvey P. Dale, Dec 12 2016 *)
  • PARI
    Vec(x*(1+4*x+2*x^2+x^3)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(1+4*x+2*x^2+x^3) / ((1-x)^4*(1+x)^2).
From Colin Barker, Jan 31 2016: (Start)
a(n) = (16*n^3+30*n^2+2*(3*(-1)^n+7)*n+3*((-1)^n-1))/48.
a(n) = (8*n^3+15*n^2+10*n)/24 for n even.
a(n) = (8*n^3+15*n^2+4*n-3)/24 for n odd.
(End)